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AbstractÐA two-dimensional analytical solution for stress, strain rate, and velocity is obtained for parallel-
sided and wedge-shaped blocks with generalized viscous rheology (linearly viscous and power-law) deforming
in plane strain. The main assumptions used in the derivation of the solution are that the material is incompres-
sible, the longitudinal gradient in shear stress is much less than the vertical gradient of vertical normal stress,
and the longitudinal strain rate varies linearly in the horizontal direction. Velocity boundary conditions are
speci®ed at the top of the block, and shear stress boundary conditions at the base of the block. In the one-
dimensional case (where stress and strain rate do not vary in the longitudinal direction), the solution reduces
to a well-known solution for the deformation of parallel-sided ice sheets [Nye, J. F. (1957) The distribution of
stress and velocity in glaciers and ice sheets. Proceedings of the Royal Society of London A-239, 113±133]. The
stress equilibrium for tapered wedges [Platt, J. P. (1986) Dynamics of orogenic wedges and the uplift of high-
pressure metamorphic rocks. Geological Society of America Bulletin 97, 1037±1053] is a special case of the pre-
sent stress solution. Implementation of the solution requires the subdivision of the wedge into vertical seg-
ments, and yields the tectonic normal and shear stresses that must be applied to the rear of a block with
speci®ed rheology in order to maintain a given longitudinal strain rate. The solution makes it possible to
model deformation patterns analytically with longitudinally varying strain rate (including coeval compression
and extension) and with vertical components of velocity re¯ecting the e�ects of underplating. # 1998 Elsevier
Science Ltd. All rights reserved

INTRODUCTION

Most models for orogenic wedges, notably the critical
taper model, have focused on the dynamic equilibrium

of foreland fold-and-thrust belts and accretionary
prisms, i.e. supracrustal thin-skinned orogenic wedges
which are usually less than 5±10 km thick at the rear
(Elliott, 1976; Chapple, 1978; Davis et al., 1983;
Dahlen, 1984, 1990; Dahlen et al., 1984; Dahlen and
Suppe, 1988; Zhao et al., 1986; Yin, 1989; Liu and
Ranalli, 1992). These thin-skinned wedge models, how-
ever, do not account quantitatively for some features
often observed in thick-skinned orogenic wedges invol-
ving basement rocks (Pavlis and Bruhn, 1983; Platt,
1986, 1987, 1993), namely: (a) coeval development of
compressional structures at the thin-skinned foreland
`front' and extensional structures at the thick-skinned
`rear' towards the hinterland; (b) exhumation of high
pressure±low temperature metamorphic rocks near the
rear of the wedge; and (c) nonlinear rheology of ma-
terials (which is Coulomb frictional only in the upper
parts, and most likely nonlinearly viscous in the bulk

of the wedge; Platt, 1986, 1987, 1993; Liu and Ranalli,
1994; Ranalli, 1995; Liu, 1996).

Thus, the need exists for models incorporating the
nonlinear bulk rheology of thick-skinned wedges.
Analytical solutions for nonlinear (power-law) viscous
rheology exist in glaciology (Nye, 1951, 1957, 1969;
Budd, 1970; Shoemaker and Morland, 1984). One of
these is the classic ice sheet solution obtained by Nye

(1957) for incompressible plane strain ¯ow. Because of
the similarities between the movement of glaciers and
ice sheets and that of nappes and thrust sheets (Elliott,
1976), this solution has been applied to the analysis of
shortening and elongating thrust sheets (Wojtal,
1992a,b). Since it does not specify a priori the stress
exponent n for the material, it is su�ciently general to
accommodate a wide range of deformation modes
which might be applicable to thick orogenic wedges:
linear Newtonian ¯ow (n= 1), power-law creep
(n = 204), and perfect plasticity (n 41). However,
Nye's solution is applicable only to parallel-sided
sheets with uniform shortening or extending ¯ows,
since it is based on the assumptions that the stress ten-
sor depends on depth only and that the vertical vel-
ocity component does not vary with longitudinal
position. The constancy of longitudinal strain rate
makes this solution unsuitable to the modelling of
thick-skinned orogenic wedges where the deformation
pattern varies not only in the vertical but also in the
longitudinal direction.

In this paper we present a two-dimensional plane
strain analytical solution for stresses and velocities in
blocks and wedges with nonlinear rheology. This sol-
ution removes some of the conditions limiting Nye's
(1957) solution, and is therefore applicable to cases
where the strain rate varies in the longitudinal direc-
tion. It reduces to Nye's solution in the one-dimen-
sional case. The focus of the argument is on the
procedure for obtaining a closed-form solution, and
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not on computational details. However, the results of
four model tests are given, to show the potential appli-
cability of the solution to thick-skinned orogenic
wedges.

GOVERNING EQUATIONS

The geometry of the model, coordinate system, and
sign convention for stresses are given in Fig. 1. The
equilibrium condition for two-dimensional incompres-
sible power-law ¯ow is (cf. e.g. Ranalli, 1995)

@sxx
@x
� @sxy

@y
� rgx � 0

@sxy
@x
� @syy
@y
� rgy � 0 �1�

where sij is the stress tensor, r the density, and gi the
acceleration of gravity. The rheological equations are

_exx � ls0xx

_eyy � ls0yy

_exy � ls0xy �2�

where s'ij is the stress deviator, eÇ ij is the strain rate ten-

sor, and l is a stress-dependent parameter having

dimensions of reciprocal viscosity. The strain rate ten-

sor is related to velocity components u, v in the x, y

direction as

_exx � @u
@x

_eyy � @v
@y
� ÿ @u

@x

_exy � 1

2

@u

@y
� @v
@x

� �
�3�

and the stress deviator is given by

Fig. 1. (a) Simpli®ed two-dimensional orogenic wedge model: a is the surface slope, b the basal slope, u, v the velocity
components, and g the acceleration of gravity; positive stress components are shown. (b) Parallel-sided block and (c)

wedge-shaped block. tb is basal shear stress, h is local wedge thickness.
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s0xx �
1

2
sxx ÿ syy
ÿ �

s0yy �
1

2
syy ÿ sxx
ÿ � � ÿs0xx

s0xy � sxy �4�

The explicit form of the parameter l in equation (2)
for power-law creep is (cf. e.g. Ranalli, 1995)

l � A0 exp ÿQ� PV

RT

� �
1

2
s0ijs

0
ij

� ��nÿ1�=2
�5�

where T is absolute temperature, P pressure, R the
universal gas constant, and Q, V, A0 and n are ma-
terial parameters [Q and V are the creep activation
energy and activation volume, respectively; the term
PV is negligible when P<<k (bulk modulus) as is the
case in the crust]. The parameter l becomes indepen-
dent of the state of stress if the rheology of the ma-
terial is Newtonian (n = 1).

A TWO-DIMENSIONAL LINEAR
LONGITUDINAL STRAIN RATE SOLUTION

Basic assumptions

Four assumptions are adopted in the derivation of
the present solution:

1. The longitudinal strain rate eÇxx varies linearly in the
longitudinal direction at any point within the wedge

@2 _exx
@x2
� 0 �6�

2. The gradient of shear stress in the x-direction is
negligible compared with the gradient of vertical
normal stress in the y-direction

@sxy
@x

���� ���� << @syy
@y

���� ���� �7�

3. The wedge material is incompressible and in plane
strain

@u

@x
� @v
@y
� 0 �8�

4. The density varies with depth only

@r
@x
� 0: �9�

It should be noted that the terms `horizontal' and `ver-
tical' are used in this paper in the sense of `x-direction'
and `y-direction'. Since the surface slope angle a is

usually small (aR68, cf. Boyer and Elliot, 1982;
Suppe, 1985), this has no major consequences.

The ®rst assumption [equation (6)] greatly simpli®es
the problem while still allowing the simulation of syn-
convergence extension, which is a ®rst-order feature of
many orogenic wedges (Pavlis and Bruhn, 1983; Platt,
1986, 1987, 1993). The introduction of this assumption
implies that the problem becomes that of ®nding force
boundary conditions at the rear of the wedge resulting
in a linearly varying longitudinal strain rate and realis-
tic fault patterns. Consequently, the validity of the
assumption is tested a posteriori from the success of
the solution to model realistic tectonic forces and de-
formation. The second assumption [equation (7)] is
generally held to be correct to the ®rst order and has
been adopted in numerous studies (Elliott, 1976; Boyer
and Elliott, 1982; Davis et al., 1983; Dahlen, 1984;
Suppe, 1985; Platt, 1986; Liu and Ranalli, 1992, 1994;
Yin, 1988, 1989, 1993). The third assumption
[equation (8)] should be a good approximation when-
ever the material is well lithi®ed (cf. Dahlen and Barr,
1989 for details); however, it is not valid when there is
large volume reduction due to loss of ¯uids. The
fourth assumption [equation (9)] is simply a ®rst ap-
proximation to the usual density variations in the
upper crust of the Earth.

Derivation of solution

A general stress solution to equation (1) under the
second assumption [equation (7)] is

sxx � ÿ�rgyy� F�y� ÿ xG0�y�
syy � ÿ�rgyy

sxy � ÿ�rgxy� G�y� �10�
where r is the depth-averaged density and F(y), G(y)
are two arbitrary functions of depth. Physically, F(y)
and G(y) are the non-gravitational (i.e. tectonic) nor-
mal and shear stress components applied on the rear
of the block (Fig. 2).

Using the stress solution [equation (10)] in the ex-
pressions for strain rate [equation (2)] and taking into
account equation (4), the strain rate components are

_exx � ls0xx �
l
2

F�y� ÿ xG0�y�� �
_eyy � ls0yy � ÿ

l
2

F�y� ÿ xG0�y�� �
_exy � ls0xy � l G�y� ÿ �rgxy

� � �11a�

where the parameter l as de®ned in equation (5), can
be expressed in terms of the stress solution as

l � B0
1

4
F�y� ÿ xG0�y�� �2� G�y� ÿ �rgxy

� �2� ��nÿ1�=2
�11b�
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where B0 � A0 exp ÿ Q�PV
RT

� �
is a function of tempera-

ture, pressure and material parameters [see
equation (5)].
The general expressions for the velocity components

are obtained by integrating the ®rst two of equation (3)
with respect to x and y, respectively,

u�x; y� � 1

2

Z x

0

l�x; y� F�y� ÿ xG0�y�� �
dx�H�y�

v�x; y� � ÿ 1

2

Z y

0

l�x; t� F�t� ÿ xG0�t�� �
dt� I�x� �12�

where I(x) and H(y) are two integration functions.
Physically, H(y) is the vertical distribution of the longi-
tudinal velocity component at the rear of the block,
since H(y) = u(x = 0, y); and I(x) is the longitudinal
distribution of vertical velocity component at the sur-
face, since I(x) = v(x, y = 0).
Combination of the four assumptions [equations (6)±

(9)] and appropriate boundary conditions allow all the
integration functions appearing in equations (10)±(12)
to be expressed as functions of F(y) and seven arbi-
trary constants (a1, a2, a3, b1, b2, b3, b4). The details of
the derivation are given in the Appendix. The ®nal ex-
pressions for stress, strain rate and velocity are

sxx � ÿ�rgyy� 1� a1 � b1y

a2 � b2y
x

� �
F�y�

syy � ÿ�rgyy

sxy � ÿ
Z y

0

rgx � a1 � b1t
a2 � b2t

F�t�
� �

dt �13a�

_exx � ÿ�a1 � b1y�xÿ �a2 � b2y�

_eyy � ÿ_exx

_exy � 2�a2 � b2y�
F�y�

Z y

0

rgx � a1 � b1t
a2 � b2t

F�t�
� �

dt �13b�

u � ÿ x2

2
�a1�b1y�ÿx�a2�b2y�ÿb1

6
y3ÿa1

2
y2ÿb3y

ÿ a3�4
Z y

0

a2�b2z
F�z�

Z z

0

rgx�a1�b1t
a2�b2tF�t�

� �
dt

( )
dz

v � b1
6
x3 � b2

2
x2 � x

b1
2
y2 � a1y� b3

� �
� b2

2
y2 � a2y� b4 �13c�

The parameter l in equation (2) can be written in
terms of F(y) and arbitrary constants as
l =ÿ 2(a2+b2y)/F(y), which, when combined with
equations (5) and (11b), links the function F(y) with
the rheology of the block through the following ex-
pression

ÿ 2�a2 � b2y�
F�y�B0

�
(�

F�y�
2

�
1� a1 � b1y

a2 � b2y
x

�#2

�
"Z y

0

�
rgx � a1 � b1t

a2 � b2t
F�t�

�
dt
�2)�nÿ1�=2

: �13d�

Equations (13a±d) constitute a complete general sol-
ution for a two-dimensional block with power-law
rheology and linear longitudinal strain rate. The gen-
eral solution is equally applicable to rectangular blocks
and to triangular wedges (refer to Fig. 1).

Discussion of the solution

Several points about equation (13) should be noted:

1. There are two kinds of unknowns which are
involved in equation (13), and need to be deter-
mined from boundary conditions: the function F(y),
and seven constants of integration. The function
F(y) is related to some of the integration constants
[cf. equation (13d)]. According to their kinematic
implications, these seven constants can be classi®ed
into two groups: those related to longitudinal strain
rate (a1, a2, b1 and b2), and those related to rigid-
body motion corresponding to velocity and rotation
at the origin (a3, b3 and b4).

2. The state of stress at the rear of the block (x = 0),
represented by the functions F(y) and G(y), is re-
lated to rheology and strain rate [cf. equation (13d)
and (A6) in the Appendix]. The solution therefore
requires F(y) to be computed for a given rheology
and prescribed strain rate. Physically, therefore,
F(y) is the tectonic normal stress required at the rear
of a block with given material rheology and tempera-
ture distribution to maintain a given longitudinal
strain rate. Another possible way of applying

Fig. 2. State of stress along the wedge rear boundary (x= 0). The
stress axis refers to magnitude. According to the adopted sign con-
vention, F(y) < 0 when compressive; G(y) < 0 when shearing down-

wards.
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equation (13d) is to compute the strain rate for a
given rheology and independently speci®ed F(y).
However, this approach leads to severe di�culties,
since it is not feasible to ensure the compatibility of
the speci®ed F(y) with the given rheology and tem-
perature distribution.

3. The assumption of linear longitudinal strain rate
[equation (6)] requires the parameter l to be a func-
tion of y only [see equation (A5) in the Appendix].
This results in the left side of equation (13d) being
a function of y only while the right side is a func-
tion of both x and y. This apparent paradox is the
direct consequence of the linearity assumption for
the longitudinal strain rate. To demonstrate the
impact of this assumption on the relation between
strain rate and deviatoric stress [i.e. equation (2)],
we have derived other closed-form solutions based
on di�erent assumptions for the longitudinal strain
rate. For example, assuming that the longitudinal
strain rate at any depth y is a cubic polynomial
function of position x (i.e. @4 _exx=@x4 � 0), we obtain
another set of solutions for stress, strain rate and
velocity. Both sides of the corresponding
equation (13d) for this new set of solutions are
functions of x and y. Although it is much more
complicated, this new set of solutions can be
reduced to the simpler solution reported in this
paper if we degrade the assumption on the longi-
tudinal strain rate from a cubic polynomial function
of x into a linear function of x. Obviously, the com-
plexity of the solution increases with the complexity
of the assumed x-dependence of longitudinal strain
rate. On the other hand, the signi®cant bene®t of
the linearity assumption is the relative simplicity of
the derived analytical solution.

Numerically, this di�culty is solved by dividing the
wedge into vertical segments of width Dx and applying
equation (13) to each segment, within which the longi-
tudinal variation of deviatoric normal stress is negli-
gible. Physically, the interdependence of tectonic stress
and longitudinal strain rate is a consequence of the
rheological properties of the wedge. Mathematically,
the determination of F(y) from equation (13d) is a
two-point boundary value problem, which is solved here
by the so-called shooting method (for detailed discus-
sion see Press et al., 1992).

For a typical wedge segment with a longitudinal
width less than 10 km, the longitudinal variation of
the computed function F(y) is less than 5% (Liu,
1996). A smooth variation of the solution for stress,
strain rate and velocity from one segment to the next
supports its validity. Continuity for adjacent Dx is
achieved by linear interpolation.

Two sets of boundary conditions are speci®ed for
each segment: three points on the top boundary with
assigned velocity and one point on the basement with
assigned basal shear stress. The state of stress along

the basement, together with the smoothness of the sol-
ution in the whole wedge, is another test of the validity
of the present approach. The required basal shear
stress tb should be smooth, either constant or increas-
ing from the front to the rear, and of reasonable mag-
nitude (0±100 MPa).

COMPARISON BETWEEN TWO-DIMENSIONAL
AND ONE-DIMENSIONAL SOLUTIONS

The linear longitudinal strain rate solution given by
equation (13) is a two-dimensional extension of the
classic one-dimensional solution for glacier ¯ow (Nye,
1957). Table 1 compares the two solutions in detail,
and shows that the present solution reduces to Nye's
for a1=b1=b2=b3=0, which is equivalent to the
assumption @v/@x = 0 used in Nye's analysis. In the
one-dimensional solution, both the second stress invar-
iant and the shear stress are assumed to be indepen-
dent of longitudinal position. In the two-dimensional
solution, the less restrictive assumption that the longi-
tudinal gradient in shear stress is negligible compared
with the vertical gradient in vertical normal stress
results in a horizontal normal deviatoric stress which is
a linear function of longitudinal position. This allows
a more complex velocity ®eld to be accommodated.

COMPARISON WITH EQUILIBRIUM
CONDITION FOR TAPERED WEDGES

In this section, we compare the present solution with
Platt's dynamic stability criterion for orogenic wedges
(Platt, 1986), and show that this criterion is a particu-
lar case of the present stress solution.

Assuming an unspeci®ed viscous rheology, Platt
(1986) derived a stability criterion for two-dimensional
plane strain thick orogenic wedges, which relates the
basal shear stress (tb) to the topographic slope (a), the
depth-averaged longitudinal deviatoric stress (txx) and
its longitudinal gradient acting in a tapered wedge (cf.
Fig. 3)

tb � rghaÿ 2txxyÿ 2
@txx
@x

h �14�

where y(=a + b) is the taper of the wedge, h the local
thickness of the wedge, r density, and g gravity.

It should be pointed out that an additional implicit
assumption is needed in Platt's model in order to de-
rive equation (14). This is that the longitudinal devia-
toric stress txx be equal to zero on the upper surface
of the wedge. This assumption is used when inte-
gration with respect to y is performed on the stress
equilibrium equation in the x-direction [see
equations (11) and (12) in Platt, 1986]. This additional
condition means that the near-surface part of the
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wedge is always under a nearly lithostatic state of

stress.

To recast the present stress solution [equation (13a)]

in a format that is directly comparable with Platt's

model, the longitudinal deviatoric stress (s'xx) and the

depth-averaged longitudinal deviatoric stress (txx) are

computed from equation (13a)

s0xx�
F�y�ÿxG0�y�

2

@txx
@x
� @

@x

1

h

Z h

0

s0xxdy

" #
�ÿ 1

2h

Z h

0

G0�y�dy�ÿG�h�
2h

�15�

where h is the thickness of the wedge at the point

Table 1. Comparison between one-dimensional solution (Nye, 1957) and the present two-dimensional solution.

*Minor modi®cations to Nye's original expressions have been made to facilitate comparison.
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under consideration. The basal shear stress tb is related
to the state of stress within the wedge as (cf. e.g.
Ranalli, 1995)

tb � 1

2
syy ÿ sxx
ÿ �

y�hsin 2yÿ sxy
ÿ �

y�hcos 2y

1�rghaÿ y F�y� ÿ xG0�y�� �
y�hÿG�h� �16�

Combining equations (15) and (16) leads to

tb � �rghaÿ 2y s0xx
ÿ �

y�h�2h
@txx
@x

�17�

where small-angle approximations for a and y are
used.
Comparison of equations (14) and (17) shows two

di�erences: (1) the signs of the third term on the right
side are di�erent; and (2) the stress component in the
second term on the right side of equation (17) is the
longitudinal deviatoric stress on the basement (i.e.
y= h) while the corresponding term in equation (14)
is the depth-averaged longitudinal deviatoric stress.
The sign di�erence is a trivial consequence of the

di�erence in coordinate systems (compare Figs 1c & 3).
The second di�erence is caused by the aforementioned
assumption about the stress state along the wedge upper
surface.

Therefore, Platt's (1986) stability criterion is compa-
tible withÐindeed, it is a particular case ofÐthe stress
solution derived in this paper, subject to the assump-
tion that the longitudinal deviatoric stress does not
vary signi®cantly along any depth pro®le. This con-
dition most likely holds in thin-skinned wedges but
may not be satis®ed in thick-skinned wedges, where
deformation patterns may vary signi®cantly in the ver-
tical direction.

EXAMPLES

Four examples of the two-dimensional solution are
discussed in this section. The ®rst two are rectangular
blocks with Newtonian and power-law rheologies; the
remaining two are wedges with Newtonian and power-
law rheologies. The parameter values used in the com-
putations are listed in Table 2. All cases are parame-
terized in the following way:

(a) The velocity boundary conditions along the top
surface are of the general form

utop � u0 � u1x� u2x
2

vtop � v0 � v1x �18a�
where u0, u1, u2, v0 and v1 are constants. Assuming
that displacements of the top and the base of the
block are related, this boundary condition can rep-
resent indirectly basal underplating and basal ero-
sion.

Fig. 3. Platt's accretionary wedge model and its coordinates (Platt,
1986): a and b are the top and basal slopes, respectively; y(=a+ b)

is the taper of the wedge, h thickness, and tb basal shear stress.

Table 2. Model parameters for rectangular and wedge-shaped blocks

Rectangular block (L = 250 km, a= b = 38, r= 2800
kg mÿ3)

Wedge block (L = 200 km, a= 38, b = 68, r= 2700
kg mÿ3)

Case*
Parameter A B C D

u0 (�10ÿ10 m sÿ1) 31.71$ 31.71 0 0
u1 (�10ÿ15 sÿ1) ÿ1 ÿ1 ÿ1 1
u2 (�10ÿ20 mÿ1 sÿ1) 0 0 ÿ2.25 ÿ1
v0 (�10ÿ10 m sÿ1) ÿ0.4 ÿ0.4 ÿ1.5855 ÿ1.5855
v1 (�10ÿ15 sÿ1) 0 0 0.7927 0.7927
t0 (MPa) ÿ57.44 ÿ57.44 ÿ80 ÿ80
t1 (MPa kmÿ1) 0 0 0.4 0.4
T0 (K) % 750 % 750
T1 (K kmÿ1) % 2.5 % 0
A*
0 (�10ÿ23 Paÿ1 sÿ1) 5 % 5 %

A*
1 (�10ÿ23 Paÿ1 sÿ1 kmÿ1) 0 % 0 %

power-law rheology % anorthosite} % anorthosite}

*Cases A, B, C, and D refer to Figs 4±7, respectively.
A:Newtonian, constant Z(1022 Pa s), constant eÇxx and constant v on surface, constant tb.
B:Power-law, depth-dependent T, constant exx and constant v on surface, constant tb.
C:Newtonian, constant Z(1022 Pa s), variable eÇxx and variable v on surface, variable tb.
D:Power-law, constant T, variable eÇxx and variable v on surface, variable tb.

$100 mm aÿ1131.71� 10ÿ10 m sÿ1.
%not applicable (constant Newtonian viscosity or computed power-law viscosity).
}rheological parameters: A0=2.06� 10ÿ23 Paÿ3.2 sÿ1, n= 3.2, Q= 238 kJ molÿ1.
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(b) The basal shear stress along the basement is a lin-
ear function of position

tb � t0 � t1x �18b�
where t0 and t1 are constants.

(c) The temperature within the block is either constant
or varies linearly with depth

T � T0 � T1y �18c�
where T0 and T1 are constants.

(d) The rheology of the block can be nonlinear (stress
exponent n>1) or linear (n = 1). In case of linear
rheology, Newtonian viscosity is assumed to be of
the form

Z � 1

2 A�0 � A�1y
ÿ � �18d�

where and A*
0 are A*

1 constants. This allows the vis-

cosity to be either constant or decreasing with

depth.

The ®rst example (Fig. 4) serves as a reference case for

a rectangular block with constant Newtonian viscosity

(Z = 1022 Pa s) and constant basal shear stress. The

top velocity boundary condition is such that the u

component varies linearly with x (resulting in a con-

stant longitudinal strain rate of eÇxx=ÿ 10ÿ15 sÿ1 on

the upper surface of the block) and the v component is

Fig. 4. Stress and deformation within a rectangular block with Newtonian rheology (case A of Table 2). (a) Velocity
®eld; (b) maximum shear stress trajectories and type of potential faults; (c) tectonic (non-gravitational) normal and shear

stresses along the rear of the block.
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constant. This velocity boundary condition is compati-
ble with Nye's one-dimensional solution (Nye, 1957).
Consequently, results for this case yield simply a two-
dimensional representation of Nye's one-dimensional
solution in the case of Newtonian viscosity. Figure 4
shows (a) the velocity ®eld within the block; (b) the
maximum shear stress trajectories, which coincide with
potential faulting surfaces in a frictionless (plastic) ma-
terial; (c) the depth distribution of the `non-gravita-
tional' normal and shear stress components [i.e. the
functions and F(y) and G(y)] along the rear vertical
edge of the block (note that a tectonic compression is
required to maintain the deformation regime).
The second example (Fig. 5) considers a rectangular

block of nonlinear rheology with the power-law creep
parameters of anorthosite (cf. Ranalli, 1995) and the
same velocity and basal shear stress boundary con-

ditions as in the previous case. The temperature
increases from 750 K on the top to 850 K at the bot-
tom of the block (the relatively large temperature at
the top is necessary to yield realistic strain rates, given
the rheology of the material). Even this low tempera-
ture gradient increases considerably the ductility of the
material: predominant laminar ¯ow is found near the
base of the block. F(y) decreases in magnitude non
linearly from about 76 MPa at the top to about
0 MPa at the bottom of the block.

The third example (Fig. 6) consists of a wedge with
constant Newtonian viscosity (Z = 1022 Pa s) and a
longitudinal component of the top velocity boundary
condition resulting in a longitudinal strain rate eÇxx
varying from ÿ10ÿ15 sÿ1 at the rear to ÿ10ÿ14 sÿ1 at
the front of the wedge. The velocity boundary con-
ditions result in a dominant movement pattern of

Fig. 5. Stress and deformation within a rectangular block with power-law rheology (case B of Table 2). (a), (b) & (c) as
in Fig. 4.
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wedge material which is longitudinal at the front, and
mainly vertical towards the rear (for instance, as
resulting from increasing underplating). The maximum
shear stress trajectories show thrust deformation
throughout the wedge. F(y) increases in magnitude
from 40 MPa at the top to 50 MPa at the bottom of
the wedge; G(y) varies roughly in a parabolic way with
depth.
The fourth example (Fig. 7) considers a wedge with

the power-law rheology of anorthosite and with a con-
stant temperature of 750 K. The longitudinal strain
rate eÇxx on the top surface of the wedge varies linearly
from ÿ10ÿ15 sÿ1 at the rear to ÿ3� 10ÿ15 sÿ1 at the
front. There is some underplating near the rear of the
wedge as in the previous case (note the di�erent vel-
ocity scale in the ®gures). The maximum shear stress
trajectories show coeval development of an extensional

regime (potential normal faulting) at the rear and a
compressional regime (thrusting) at the front of the
wedge. The non-gravitational normal stress at the rear
of the wedge necessary to maintain this deformation
regime is tensional: F(y) decreases nonlinearly from
about 80 MPa on the top to about 10 MPa at the bot-
tom of the wedge. The depth distribution of G(y) is
similar to the previous case.

DISCUSSION AND CONCLUSIONS

We have presented an analytical linear longitudinal
strain rate solution for blocks and wedges with non-
linear rheology (nr1), which is a two-dimensional
extension of the classic one-dimensional solution de-
rived by Nye (1957) for ice sheets. This solution allows

Fig. 6. Stress and deformation within a wedge-shaped block with Newtonian rheology (case C of Table 2). (a), (b) & (c)
as in Fig. 4.
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the modelling of stresses and deformation in two-
dimensional orogenic wedges with deformation styles
varying in the longitudinal direction.
The basic kinematic assumption is that the longi-

tudinal strain rate, at any depth, is a linear function of
the distance from the rear of the block. Together with
wedge segmentation, this assumption allows the simu-
lation of varying deformation patterns, including coe-
val compression and extension, in di�erent parts of the
wedge. The speci®cation of velocity boundary con-
dition on the surface of the block signi®cantly simpli-
®es the implementation of the solution. A more
complicated algorithm would be needed to specify the
velocity boundary conditions on the basement rather
than on the top surface. However, kinematic con-
ditions on the top of an incompressible block may be
taken as a ®rst approximation to conditions at the bot-

tom, for instance, with an upward component of vel-
ocity simulating underplating.

In the solution, the nongravitational stresses F(y)
and G(y) along the rear vertical boundary of the block
are derived quantities, i.e. they are the tectonic stresses
necessary to maintain the speci®ed linear longitudinal
strain rate for a given rheology under speci®ed top
(velocity) and bottom (shear stress) boundary con-
ditions (this approach is the same as the one taken in
the one-dimensional solution; Nye, 1957).
Alternatively, they could be assigned a priori as part of
the boundary conditions, but this is not possible in the
framework of the present solution. It remains to be
discussed, in any particular case, whether the required
normal and shear tectonic stresses are realistic. In the
four simple examples considered, their magnitudes are
of the right order, being comprised between 280 MPa.

Fig. 7. Stress and deformation within a wedge-shaped block with power-law rheology (case D of Table 2). (a), (b) & (c)
As in Fig. 4.
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Their distribution varies with depth, but is generally
rather simple. If a priori knowledge of F(y) and G(y) is
assumed, it is still possible, within the framework of
the present solution, to modify iteratively the bound-
ary conditions until the required tectonic stress distri-
bution is satisfactorily approximated.
The linear strain rate solution can also be applied to

investigate the evolution of wedges with varying taper,
by solving iteratively for di�erent surface slopes. In
this context, it is also relevant to the problem of the
exhumation of high pressure±low temperature meta-
morphic rocks near the rear of an unstable orogenic
wedge (Rubie, 1984; Platt and Lister, 1985; Platt,
1993). Combined with a given erosion rate at the top
surface of the wedge, the velocity expression of the sol-
ution [equation (13c)] provides an estimation of the
exhumation rate and, therefore, of the time variation
of the pressure±temperature conditions of rocks
throughout the wedge. Assuming that the surface ero-
sion rate is the same as the rate at which material is
uplifted at the basement of the wedge, the exhumation
rate at the rear of the wedge of the fourth example
would be about 6 mm per y (Fig. 7). This is, of course,
an upper boundary since it assumes that no additional
topography is generated.
Naturally, the rheology of orogenic wedges is more

complicated than power-law throughout. As the tem-
perature decreases approaching the surface, plastic±
brittle deformation takes over. In principle, this change
can be accommodated by the present solution, by let-
ting the stress exponent increase (pure plasticity
requires n 41), and ensuring that the deformation
patterns in the power-law and plastic domains are
compatible (Liu, 1996). Despite the limitations
imposed by its analytical character, the solution pre-
sented in this paper has the advantage of generality,
and provides an additional approach to the study of
the tectonic evolution of orogenic wedges.
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APPENDIX

In this Appendix, we derive the general solution given in the text
[equation (13)].
Di�erentiating the ®rst of equation (11a) twice with respect to x

and combining it with equation (6) leads to

F�y� ÿ xG0�y�
2

@2l
@x2
ÿ G0�y� @l

@x
� 0 �A1�

which is a second-order partial di�erential equation which can be
transformed into a ®rst-order equation and then solved by standard
procedures (cf. Spiegel, 1971).
A general solution to equation (A1) is

l � k�y�
F�y� ÿ xG0�y� � f0�y� �A2�

where k(y) and f0(y) are two integration functions.
Combination of equations (A2) and (11a) with the equation of

compatibility for two-dimensional plane strain (cf. e.g. Ranalli, 1995)
gives
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ÿ 4
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� �
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where the double prime denotes the second derivative with respect to
y.
Equation (A3) contains several terms that are functions of x of

di�erent orders. In order that equation (A3) be satis®ed at all points,
one of following three conditions must apply

�a�
k�y� � 0
f0�y�G0�y� � 2�a1 � b1y�
f0�y�F�y� � ÿ2�a2 � b2y�

8<: �A4a�

�b�
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1
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�c�
G�y� � �rgxy
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2
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2
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where a1, a2, b1 and b2 are arbitrary constants.

The second condition [equation (A4b)] represents a stress ®eld cor-

responding to ¯ow of a material compressed between two parallel

plates (Nye, 1957), and is not applicable to an orogenic wedge with

variable longitudinal deformation pattern. The third condition

[equation (A4c)] is not applicable either, because it is a stress ®eld

with zero shear stress everywhere in the wedge, which is not able to

produce any shear deformation. Therefore, only the ®rst case

[equation (A4a)] is relevant.

Equation (A4a) gives

l � f0�y� � ÿ
2 a2 � b2y
ÿ �

F�y�

G0�y� � ÿ a1 � b1y

a2 � b2y
F�y� �A5�

Integrating the second of equations (A5) with respect to y gives

G�y� � ÿ
�y
0

a1 � b1t
a2 � b2t

F�t�dt �A6�

where the traction-free boundary condition on the surface of the

wedge [i.e. G(0) = 0] has been used to determine the integration con-

stant. Equation (A6) implies that the normal and shear stress com-

ponents of non-gravitational stress along the rear boundary of the

wedge are not independent of each other.

The velocity integration functions I(x) and H(y) in equation (12)

can be determined by combining equations (A5), (A6) and (11a) with

(2). After some algebra, we have

I�x� � b1
6
x3 � b2

2
x2 � b4

H�y� � 4

�y
0
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F�z�

�z
0
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dt
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ÿ b

6
y3 ÿ a1

2
y2 ÿ b3yÿ a3 �A7�

where a3, b3 and b4 are arbitrary constants.

Thus, all the integration functions for stress, strain rate, and vel-

ocity have been expressed as functions of seven arbitrary constants

and the function F(y), the horizontal nongravitational stress on the

rear of the block.
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